DNA copy number aberrations in endobronchial lesions: a validated predictor for cancer.

نویسندگان

  • Robert A A van Boerdonk
  • Johannes M A Daniels
  • Peter J F Snijders
  • Katrien Grünberg
  • Erik Thunnissen
  • Mark A van de Wiel
  • Bauke Ylstra
  • Pieter E Postmus
  • Chris J L M Meijer
  • Gerrit A Meijer
  • Egbert F Smit
  • Thomas G Sutedja
  • Daniëlle A M Heideman
چکیده

We recently identified a DNA copy number aberration (CNA)-based classifier, including changes at 3p26.3-p11.1, 3q26.2-29, and 6p25.3-24.3, as a risk predictor for cancer in individuals presenting with endobronchial squamous metaplasia. The current study was set out to validate the prediction accuracy of this classifier in an independent series of endobronchial squamous metaplastic and dysplastic lesions. The study included 36 high-risk subjects who had endobronchial lesions of various histological grades that were identified and biopsied by autofluorescence bronchoscopy and were subjected to arrayCGH in a nested case-control design. Of the 36 patients, 12 had a carcinoma in situ or invasive carcinoma at the same site at follow-up (median 11 months, range 4-24), while 24 controls remained cancer free (78 months, range 21-142). The previously defined CNA-based classifier demonstrated 92% (95% CI 77% to 98%) accuracy for cancer (in situ) prediction. All nine subjects with CNA-based classifier-positive endobronchial lesions at baseline experienced cancer outcome, whereas all 24 controls and 3 cases were classified as being low risk. In conclusion, CNAs prove to be a highly accurate biomarker for assessing the progression risk of endobronchial squamous metaplastic and dysplastic lesions. This classifier could assist in selecting subjects with endobronchial lesions who might benefit from more aggressive therapeutic intervention or surveillance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی انحراف‌های کروموزومی در کارسینوم داکتال مهاجم پستان به روش هیبریدیزاسیون ژنومی مقایسه‌ای

Background: Nonlethal genetic damage is the basis for carcinogenesis. As various gene aberrations accumulate, malignant tumors are formed, regardless of whether the genetic damage is subtle or large enough to be distinguished in a karyotype. The study of chromosomal changes in tumor cells is important in the identification of oncogenes and tumor suppressor genes by molecular cloning of genes in...

متن کامل

Assessment of mitochondrial DNA copy number in peripheral blood leukocyte of opiate abusers and healthy individuals

Background: Based on the studies, variation in the mitochondrial DNA (mtDNA) copy number in peripheral blood leukocytes is associated with increased susceptibility to diseases including cancer. Opiate abusers are at high risk for diseases. In this study, we measured the mtDNA copy number in peripheral blood leukocytes in a group of opiate abusers compared with those in healthy individuals. Met...

متن کامل

Invited review DNA copy number changes as diagnostic tools for lung cancer.

Lung cancer usually presents as advanced stage disease and there is a need for early diagnosis so that appropriate treatments can be provided prior to tumour progression. Copy number variation is frequently detected in tumours and can contribute to tumour progression. This is because regions harbouring DNA imbalance can contain genes encoding critical proteins whose altered dosage contributes t...

متن کامل

Molecular inversion probes reveal patterns of 9p21 deletion and copy number aberrations in childhood leukemia.

Childhood leukemia, which accounts for >30% of newly diagnosed childhood malignancies, is one of the leading causes of death for children with cancer. Genome-wide studies using microarray chips to identify copy number changes in human cancer are becoming more common. In this pilot study, 45 pediatric leukemia samples were analyzed for gene copy aberrations using novel molecular inversion probe ...

متن کامل

O-38: Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells

Background Methods for haplotyping and DNA copynumber typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a conseque...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Thorax

دوره 69 5  شماره 

صفحات  -

تاریخ انتشار 2014